메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김예은 (한국과학기술원) 김성훈 (한국교통연구원) 여화수 (한국과학기술원)
저널정보
한국ITS학회 한국ITS학회 논문지 한국ITS학회 논문지 제20권 제5호
발행연도
2021.10
수록면
100 - 112 (13page)
DOI
https://doi.org/10.12815/kits.2021.20.5.100

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
빅데이터의 등장과 더불어 교통 상태 예측은 과거 이력 데이터 분석 방식에 힘을 싣고 발전되어 왔으나, 이 방법은 관측된 적 없는 돌발 상황에 충분히 대응하지 못한다는 약점이 있다. 본 연구에서는 기계학습과 시뮬레이션 기법의 융합을 통해 돌발 상황 발생 시 교통 상태 예측정확도 감소를 보완할 수 있는 예측 기법을 제시한다. 데이터 기반 방식의 맹점은 과거에 관측된 적 없는 데이터 패턴이 인지되었을 때 드러난다. 본 연구에서는 시뮬레이션을 이용하여 과거 이력 데이터를 보강하는 방법으로 문제를 해결하고자 하였다. 제시한 방법은 기계학습 기반의 교통 예측을 수행하고, 예측 결과와 실시간으로 수집되는 교통 데이터를 지속적으로 비교하여 돌발 상황 발생 여부를 판단한다. 돌발 상황이 인지되었을 시, 시뮬레이션을 통해 생성한 데이터베이스를 활용하여 예측을 수행한다. 본 연구에서 제시한 방법은 실제 도로 구간을대상으로 검증되었으며, 검증 결과 돌발 상황에서의 교통 상태 예측 정확도 향상을 확인할 수있었다. 본 연구에서 제시한 융합 교통 예측 방법은 향후 교통 예측 고도화에 이바지할 수 있을 것으로 전망된다.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0