메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이태헌 (중앙대학교)
저널정보
한국심리학회 한국심리학회지:일반 한국심리학회지:일반 제40권 제4호
발행연도
2021.12
수록면
389 - 413 (25page)
DOI
http://dx.doi.org/10.22257/kjp.2021.12.40.4.389

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 계량 심리학 분야에서 지난 수 십 년 동안 꾸준히 논의가 진행되어 왔던 모형 추정과 평가의 원칙을 심리학 연구자들에게 소개하는 것을 목적으로 한다. 계량 심리학 분야에서 진행된 논의의 핵심은 1) 후보 모형들은 참 모형(true model)이 아니라 근사 모형(approximating model)이며, 2) 데이터 크기가 무한히 커지더라도 참 모형과 근사 모형 간 불일치는 사라지는 것은 아니기 때문에, 3) 여러 후보 모형 중 참 모형과의 불일치가 가장 낮은 것으로 추정되는 근사 모형을 선정하는 것이 바람직하다는 것이다. 이러한 모형 선정의 원리는 4차 산업 혁명의 시대, 여러 학문 분야에 걸쳐 그 영역을 확장하고 있는 기계 학습(machine learning) 분야에서 채택하고 있는 모형 평가의 원칙과 동일함을 설명하였다. 즉, 기계 학습 분야에서는 훈련(training) 과정에 노출되지 않았던 새로운 사례에서 보이는 모형의 성능인 일반화 혹은 예측 오차(generalization or prediction error)를 추정함으로써 모형을 선정하는데, 이는 계량 심리학 분야에서 근사모형과 참모형의 불일치 추정량인 총체적 오차(overall discrepancy)를 추정함으로써 모형을 선정해야 한다는 원리와 동일함을 설명하였다. 본 논문의 두 번째 목적은, 이러한 모형 선정의 원칙에 대한 이해를 바탕으로, 현재 심리학 분야에서 주어진 데이터에 대한 “철저한” 분석 관행이 초래하는 과적합(overfitting) 문제와 그 해결 방안을 논의하는 데 있다. 특히, 기계 학습 분야에서 가정 널리 사용되고 있으며, 계량 심리학 분야에서도 오래전부터 논의가 되어온(Mosier, 1951) 교차-타당성 입증법(cross-validation)을 일반화 오차의 추정량이라는 관점에서 소개하고 사용을 당부하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0