메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김희영 (고려대학교) 이수기 (한양대학교)
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제23권 제6호
발행연도
2021.12
수록면
2,523 - 2,534 (12page)
DOI
10.37727/jkdas.2021.23.6.2523

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Spatial dependency is important to recognize because of the mapping of pedestrian injury counts analysis. Road safety has been a major issue in contemporary societies, with road crashes incurring major human and materials costs annually worldwide. South Korea’s pedestrian traffic accident rate is the highest among the Organization for Economic Cooperation and Development (OECD) countries. In this paper, we use spatially lagged covariate model with zero inflated Conway-Maxwell-Poisson distribution model to account for spatial autocorrelation of no. of pedestrian crashes with cars. Alternatively, the Conway-Maxwell-Poisson (CMP) distribution, first proposed by Conway and Maxwell (1962) has the flexibility to handle all levels of dispersion, including underdispersion. We test spatial autocorrelation of pedestrian injury counts at 2474 sites, with several weights matrices using Moran's I statistics, under permutation scheme. Then we fit different 20 models, and finally choose the best model by the AIC and SBC values.

목차

등록된 정보가 없습니다.

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0