메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김희영 (고려대학교)
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제24권 제5호
발행연도
2022.10
수록면
1,655 - 1,665 (11page)
DOI
10.37727/jkdas.2022.24.5.1655

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper documents the application of the Conway-Maxwell-Poisson(CMP) hidden Markov model for modelling motor vehicle crashes. The CMP distribution is a twoparameter extension of the Poisson distribution that generalizes some well-known discrete distributions(Poisson, Bernoulli and geometric). Also it leads to the generalizations of distributions derived from theses discrete distributions, that is, the binomial and negative binomial distributions. The advantage of CMP distribution is its ability to handle both under and over-dispersion through controlling one special parameter in the distribution, which makes it more flexible than Poisson distribution. We consider the data consisting of the daily number of injuries on the road in 2020 from the TAAS(Traffic Accident Analysis System). We apply CMP hidden Markov model to data, the parameters are estimated via maximim likelihood, and find that this model achieves better performance than commonly used Poisson hidden Markov model. For the decoding procedure, the Viterbi algorithm is implemented.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0