메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
한승연 (서울시립대학교) 이임평 (서울시립대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제37권 제6호
발행연도
2021.12
수록면
1,757 - 1,766 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
녹피율은 행정구역면적 대비 녹지가 피복된 면적의 비율로, 실질적인 도시녹화 지표로 활용되고 있다. 현재 녹피율은 토지피복지도를 기반하여 산출되는데, 토지피복지도의 낮은 공간해상도와 일정하지 않은 제작시기는 정확한 녹피율 산출과 정밀한 녹피분석을 어렵게 한다. 따라서 본 연구는 새로운 녹피율 산출방안으로항공영상과 심층학습을 활용한 방안을 제안한다. 항공영상은 높은 해상도와 비교적 일정한 주기로 정밀한 분석을 가능하게 하며 심층 학습은 항공영상 내 녹지를 자동으로 탐지할 수 있다. 지자체는 매년 다양한 목적을위해 유인항공영상을 취득하여 이를 활용해 신속하게 녹피율을 산출한다. 하지만 미리 취득된 유인항공영상은 취득 시기와 해상도, 센서와 같은 세부사항을 선택할 수 없어 정밀한 분석이 어려울 수 있다. 이러한 한계점은 다양한 센서의 탑재가 가능하고 낮은 고도의 비행으로 인해 고해상도 영상을 취득할 수 있는 무인항공기를활용하여 보완될 수 있다. 이에 두 가지 항공영상으로부터 녹피율을 산출하였고 그 결과, 모든 녹지 유형으로부터 높은 정확도로 녹피율을 산출할 수 있었다. 하지만 유인항공영상으로부터 산출된 녹피율은 복잡한 환경에서 한계가 있었다. 이를 보완하고자 활용한 무인항공영상은 복잡한 환경에서도 높은 정확도의 녹피율을 산출할 수 있었고 추가밴드 영상을 통해 더 정밀한 녹지 영역 탐지가 가능했다. 추후 기존 유인항공영상에 새로취득한 무인항공영상을 보완적으로 사용해 녹피율을 효과적으로 산출할 수 있을 것이라 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0