메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김동수 (한국과학기술원) 김장수 (성균관대학교) 서승현 (강원대학교)
저널정보
대한수학회 대한수학회지 대한수학회지 제54권 제4호
발행연도
2017.7
수록면
1,149 - 1,161 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
An $(n_1,n_2,\dots,n_k)$-colored permutation is a permutation of $n_1+n_2+\dots+n_k$ in which $1,2,\dots,n_1$ have color $1$, and $n_1+1$, $n_1+2$, $\dots,n_1+n_2$ have color $2$, and so on. We give a bijective proof of Steinhardt's result: the number of colored permutations with no monochromatic cycles is equal to the number of permutations with no fixed points after reordering the first $n_1$ elements, the next $n_2$ element, and so on, in ascending order. We then find the generating function for colored permutations with no monochromatic cycles. As an application we give a new proof of the well known generating function for colored permutations with no fixed colors, also known as multi-derangements.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0