메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
조혜선 (조선대학교) 구영도 (한국원자력연구원) 박지훈 (조선대학교) 오상원 (조선대학교) 김창회 (한국원자력연구원) 나만균 (조선대학교)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제53권 제12호
발행연도
2021.12
수록면
4,014 - 4,021 (8page)
DOI
https://doi.org/10.1016/j.net.2021.06.017

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
If safety injection systems (SISs) do not work in the event of a loss-of-coolant accident (LOCA), the accident can progress to a severe accident in which the reactor core is exposed and the reactor vessel fails. Therefore, it is considered that a technology that provides recoverable maximum time for SIS actuation isnecessary to prevent this progression. In this study, the corresponding time was defined as the goldentime. To achieve the objective of accurately predicting the golden time, the prediction was performedusing the deep fuzzy neural network (DFNN) with rule-dropout. The DFNN with rule-dropout has anarchitecture in which many of the fuzzy neural networks (FNNs) are connected and is a method in whichthe fuzzy rule numbers, which are directly related to the number of nodes in the FNN that affectinference performance, are properly adjusted by a genetic algorithm. The golden time prediction performance of the DFNN model with rule-dropout was better than that of the support vector regressionmodel. By using the prediction result through the proposed DFNN with rule-dropout, it is expected toprevent the aggravation of the accidents by providing the maximum remaining time for SIS recovery,which failed in the LOCA situation

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0