메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Xiangyang Xu (Chongqing Jiaotong University) Jiang Daibo (Chongqing Technology and Business Institute) Hateo Gou (Building Department of Shandong University)
저널정보
국제구조공학회 Steel and Composite Structures, An International Journal Steel and Composite Structures, An International Journal Vol.45 No.6
발행연도
2022.12
수록면
877 - 894 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Geopolymer concrete ( ) has emerged as a feasible choice for construction materials as a result of the environmental issues associated with the production of cement. The findings of this study contribute to the development of machine learning methods for estimating the properties of eco-friendly concrete to help reduce 2 emissions in the construction industry. The compressive strength ( ) of is predicted using artificial intelligence approaches in the present study when ground granulated blast-furnace slag ( ) is substituted with natural zeolite ( ), silica fume ( ), and varying concentrations. For this purpose, two machine learning methods multi-layer perceptron ( ) and radial basis function ( ) were considered and hybridized with arithmetic optimization algorithm ( ), and grey wolf optimization algorithm ( ). According to the results, all methods performed very well in predicting the of . The proposed − might be identified as the outperformed framework, although other methodologies ( − , − , and − ) were also reliable in the of forecasting process.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0