메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
송동욱 (강릉원주대학교) 현광민 (강릉원주대학교) 허성필 (강릉원주대학교)
저널정보
한국지식정보기술학회 한국지식정보기술학회 논문지 한국지식정보기술학회 논문지 제17권 제1호
발행연도
2022.2
수록면
91 - 99 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this paper, we demonstrates a reliable and efficient approach to detect eye-related disease with automated fundus screening using convolutional neural network (CNN) and transfer learning that counteracts to insufficient annotated data set and image domain shifts. The weight values learned from the data sets can be used as initial parameters for the other desired neural networks, and additional learning can be conducted on top of the pre-learned model, called transfer learning. It is a particularly useful method when the number of data sets is and small over limited computing power environment. Four different fundus image data sets, image domains such as ethnicity of the target and equipment which the fundus photograph was captured with, were used for the validation. The data sets were annotated by ophthalmologists as healthy, abnormal, or diabetic retinopathy. The ResNet-18 model, pre-trained with ImageNet data set of 1.2 million images of 1000 daily routine objects, were used for transfer learning. The pre-trained model were modified and additionally trained to learn features from the fundus images, and were validated with separate test sets. Given limited quantity of fundus photograph data set and various image domains, the deep learning models can yield robust ophthalmological performance in discriminating pathologies in the eyes. In spite of the simplicity, this study illustrates the capability of transfer learning and suggests pragmatic and practical approach to varied medical settings with fluctuating status of data maintenance and different image domains.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0