메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
한규만 (고려대학교)
저널정보
대한의사협회 대한의사협회지 대한의사협회지 제65권 제3호
발행연도
2022.3
수록면
176 - 184 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: Late-life depression (LLD) is one of the most common psychiatric disorders. However, LLD is often undetected or inadequately treated by clinicians. This review summarizes the recent research on pharmacotherapy for LLD, updates information on monotherapy using recommended antidepressants, and discusses the clinical features and diagnostic criteria for LLD. Current Concepts: The diagnostic criteria for depression in both elderly and young adults are identical. Clinical features of the elderly with depression more likely include more comorbid medical conditions and cognitive impairment than those of young adults. Depression in the elderly tends to have a more chronic course with frequent recurrences or relapses. Discussion and Conclusion: The current pharmacological treatment guidelines for LLD recommend the use of selective serotonin reuptake inhibitor (SSRI), serotonin-norepinephrine reuptake inhibitor, bupropion, mirtazapine, and vortioxetine as first-line medications. SSRIs, among them, are recommended first because they present fewer serious adverse effects and more clinical evidence than those of other antidepressants. Before starting antidepressant treatment for LLD, clinicians should consider patients’ comorbid medical conditions, drug interactions, possible adverse effects of antidepressants, and polypharmacy. The starting dose of antidepressants for elderly patients should be half of that prescribed for young adults to minimize the adverse effects; however, most elderly patients need the same antidepressant doses as that prescribed for young patients. After remission, a 1-year maintenance treatment is required to prevent recurrence or relapse of LLD.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0