메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박성배 (서울대학교) 유창원 (Florida International University)
저널정보
대한의사협회 대한의사협회지 대한의사협회지 제65권 제3호
발행연도
2022.3
수록면
167 - 172 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: Data collection from medicine and biomedical science is becoming a large task and increasingly complicated with each passing day. Machine learning methods have been applied to elucidate interactions between genes and genes and their environment. Current Concepts: Many machine learning methods have been used to determine the statistical meaning or relationship in the prediction or progression of diseases through the creation of causal networks based on medical big data. Through these analyses, the occurrence and progression of diseases have been shown to be related to several genes and environmental factors. However, these methods cannot identify the key upstream regulators inferred from genomic, clinical, and environmental medical data. Discussion and Conclusion: The causal Bayesian network (CBN) is a machine learning method that can be used to understand a causal network inferred from the gene expression data. The CBN can help identify the key upstream regulators through examining the causal network inferred from medical big data having genomic information. We can easily improve the clinical outcome through regulation of these identified key upstream factors. Therefore, the CBN may be a powerful and flexible tool in the era of precision medicine.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0