메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김성희 (연세대학교 사회복지연구소) 정규형 (세명대학교) 이서윤 (연세대학교)
저널정보
연세대학교 사회복지연구소 한국사회복지조사연구 한국사회복지조사연구 제74권
발행연도
2022.9
수록면
63 - 83 (21page)
DOI
https://doi.org/10.17997/SWRY.74.1.3

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study categorizes the latent class according to the change trajectory of depression types experienced by Korean older adults after the loss of a spouse and examines the determinants that derives each type. Using the Korea Welfare Panel Study (KoWePS), conducted from 2012 to 2021, data from 518 older adults aged 65 and over whose depression can be estimated for at least three years after widowhood were analyzed. A Growth Mixture Model (GMM) was applied to derive the types according to the changing patterns of depression, and a binary logistic regression analysis was performed to identify the factors affecting the derived types. As a result of the analysis, a total of two types were classified according to the change in depression. Type 1 was found to be a ‘reducing type’ in which the level of depression gradually decreased while maintaining certain level of depression, and for Type 2, an ‘increasing type’ in which the initial level of depression was higher than that of Type 1 and continued to increase thereafter. The older the individual, the more likely he or she is to live in an urban area rather than a suburban area, and if they have disability, the greater the probability that they belong to the 'increasing type' rather than the 'reducing type'. There was no significant relationship between gender, income, or education level and the type. Accordingly, it is necessary to find ways of reducing the likelihood that the depression level of the widowed older adults who fall into the 'increasing type', a risk group.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0