메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
전인성 (한국교원대학교) 송기상 (한국교원대학교)
저널정보
한국정보교육학회 정보교육학회논문지 정보교육학회논문지 제26권 제3호
발행연도
2022.6
수록면
197 - 207 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 코딩 학습 중 학습자의 인지 부하 감소를 목적으로 자연어 처리 모델을 이용하여 전이학습 및 미세조정을 통해 블록 프로그래밍 환경에서 이미 이루어진 학습자의 블록을 학습하여 학습자에게 다음 단계에서 선택가능한 블록을 생성하고 추천해주는 머신러닝 기반 블록 코드 생성 및 추천 모델을 개발하였다. 모델 개발을 위해 훈련용 데이터셋은 블록 프로그래밍 언어인 ‘엔트리’ 사이트의 인기 프로젝트 50개의 블록 코드를 전 처리하여 제작하였으며, 훈련 데이터셋과 검증 데이터셋 및 테스트 데이터셋으로 나누어 LSTM, Seq2Seq, GPT-2 모델을 기반으로 블록 코드를 생성하는 모델을 개발하였다. 개발된 모델의 성능 평가 결과, GPT-2가 LSTM과 Seq2Seq 모델보다 문장의 유사도를 측정하는 BLEU와 ROUGE 지표에서 더 높은 성능을 보였다. GPT-2 모델을 통해 실제 생성된 데이터를 확인한 결과 블록의 개수가 1개 또는 17개인 경우를 제외하면 BLEU와 ROUGE 점수에서 비교적 유사한 성능을 내는 것을 알 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0