메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Zixu Guo (Beihang University) Ziyuan Song (Beihang University) Dawei Huang (Beihang University) Xiaojun Yan (Beihang University)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.28 No.12
발행연도
2022.12
수록면
2,972 - 2,986 (15page)
DOI
10.1007/s12540-022-01195-8

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this study, in the respect of rafting behavior of Ni-based single crystal (SC) superalloy under creep and thermal mechanicalfatigue (TMF), an image processing program is developed to investigate the probability characteristic of γ channel width, anda channel width evolution model considering non-quasi-static modification is proposed. Firstly, the fractured and interruptedtests are conducted on SC superalloy. The channel width evolution behavior under different load conditions is observed viascanning electron microscope. Then, an image processing program based on image binarization is developed to conductstatistics on channel width. The statistical results show that the stress and temperature have significant effects on raftingrate, while the phase difference has a small effect. Meanwhile, the channel width obeys lognormal distribution, and the meanvalues follow linear relationship with standard deviations. In the modeling part, a static model is established to predict themean value evolution of channel width under creep condition. To be generalized to TMF condition, the model is modifiedby considering the non-quasi-static effect. After that, the channel width evolution model is further derived to describe theprobability density distribution of channel width. The predicted channel width evolutions are in good agreement with theexperimental results. The statistical results and models can provide the basis for multiscale modeling of SC superalloy.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0