메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박태준 (아주대학교) 장혜진 (아주대학교) 최병진 (아주대학교) 정정아 (아주대학교) 강성우 (아주대학교) 윤석영 (아주대학교) 김미란 (아주대학교) 윤덕용 (연세대학교)
저널정보
연세대학교 의과대학 Yonsei Medical Journal Yonsei Medical Journal 제63권 제7호
발행연도
2022.7
수록면
692 - 700 (9page)
DOI
10.3349/ymj.2022.63.7.692

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: Fetal well-being is usually assessed via fetal heart rate (FHR) monitoring during the antepartum period. However, theinterpretation of FHR is a complex and subjective process with low reliability. This study developed a machine learning modelthat can classify fetal cardiotocography results as normal or abnormal. Materials and Methods: In total, 17492 fetal cardiotocography results were obtained from Ajou University Hospital and 100 fetalcardiotocography results from Czech Technical University and University Hospital in Brno. Board-certified physicians then re viewed the fetal cardiotocography results and labeled 1456 of them as gold-standard; these results were used to train and validatethe model. The remaining results were used to validate the clinical effectiveness of the model with the actual outcome. Results: In a test dataset, our model achieved an area under the receiver operating characteristic curve (AUROC) of 0.89 and areaunder the precision-recall curve (AUPRC) of 0.73 in an internal validation dataset. An average AUROC of 0.73 and average AUPRCof 0.40 were achieved in the external validation dataset. Fetus abnormality score, as calculated from the continuous fetal cardioto cography results, was significantly associated with actual clinical outcomes [intrauterine growth restriction: odds ratio, 3.626(p=0.031); Apgar score 1 min: odds ratio, 9.523 (p<0.001), Apgar score 5 min: odds ratio, 11.49 (p=0.001), and fetal distress: odds ra tio, 23.09 (p<0.001)]. Conclusion: The machine learning model developed in this study showed precision in classifying FHR signals. This suggests thatthe model can be applied to medical devices as a screening tool for monitoring fetal status.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0