메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jin Heejin (Seoul National University) Jung Surin (Seoul National University) Won Sungho (Seoul National University)
저널정보
한국유전학회 Genes & Genomics Genes & Genomics Vol.44 No.6
발행연도
2022.6
수록면
651 - 658 (8page)
DOI
10.1007/s13258-022-01247-8

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background Missing data are a common problem in large-scale datasets and its appropriate handling is crucial for data analyses. Missingness can be categorized as (1) missing completely at random (MCAR), (2) missing at random (MAR), and (3) missing not at random (MNAR). Different missingness mechanisms require different imputation strategies. Multiple imputation, an approach for averaging outcomes across multiple imputed data, is more suitable than single imputation for dealing with various missing mechanisms. missForest, a nonparametric missing value imputation strategy using random forest, is one of the most prevalent multiple imputation methods for missing-data because it can be applied to mixed-type data and does not require distributional assumptions. However, a recent study found that missForest can produce biased results for non-normal data. In addition, missForest is computationally expensive. Objective Therefore, we aimed to further develop the missForest algorithm by combining a binary particle swarm optimization (BPSO)-based feature-selection strategy. Methods The BPSO is an evolutionary algorithm that is well known for global optimization and computational efficiency. By using the BPSO-based feature selection step prior to imputing missing values with missForest, the imputation accuracy for continuous variables could be increased by pruning redundant variables. Results In this study, missForest with BPSO (BPSOmf) showed better imputation accuracy than missForest alone with respect to continuous variables by feature selection prior to the imputation step. Conclusions BPSOmf is an appropriate and robust method when the imputation target data consist mainly of continuous variables.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0