메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제26권 제4호
발행연도
2015.8
수록면
971 - 984 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Imputation procedures fill-in missing values, thereby enabling complete data analyses. Fully efficient fractional imputation (FEFI) and multiple imputation (MI) create multiple versions of the missing observations, thereby reflecting uncertainty about their true values. Methods have been described for hypothesis testing with multiple imputation. Fractional imputation assigns weights to the observed data to compensate for missing values. The focus of this article is the development of tests of independence using FEFI for partially classified two-way contingency tables. Wald and deviance tests of independence under FEFI are proposed. Simulations are used to compare type I error rates and Power. The partially observed marginal information is useful for estimating the joint distribution of cell probabilities, but it is not useful for testing association. FEFI compares favorably to other methods in simulations.

목차

등록된 정보가 없습니다.

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001376830