메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Radaideh Majdi I. (Department of Nuclear Science and Engineering, Massachusetts Institute of Technology) Shirvan Koroush (Department of Nuclear Science and Engineering, Massachusetts Institute of Technology)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제54권 제10호
발행연도
2022.10
수록면
3,864 - 3,877 (14page)
DOI
10.1016/j.net.2022.05.001

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We propose a new approach called PESA (Prioritized replay Evolutionary and Swarm Algorithms) combining prioritized replay of reinforcement learning with hybrid evolutionary algorithms. PESA hybridizes different evolutionary and swarm algorithms such as particle swarm optimization, evolution strategies, simulated annealing, and differential evolution, with a modular approach to account for other algorithms. PESA hybridizes three algorithms by storing their solutions in a shared replay memory, then applying prioritized replay to redistribute data between the integral algorithms in frequent form based on their fitness and priority values, which significantly enhances sample diversity and algorithm exploration. Additionally, greedy replay is used implicitly to improve PESA exploitation close to the end of evolution. PESA features in balancing exploration and exploitation during search and the parallel computing result in an agnostic excellent performance over a wide range of experiments and problems presented in this work. PESA also shows very good scalability with number of processors in solving an expensive problem of optimizing nuclear fuel in nuclear power plants. PESA's competitive performance and modularity over all experiments allow it to join the family of evolutionary algorithms as a new hybrid algorithm; unleashing the power of parallel computing for expensive optimization.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0