메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Mehrdad Nouri Koupaei (Kharazmi University) Mohammad Mohammadi (Kharazmi University) Bahman Naderi (Kharazmi University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.16 No.2
발행연도
2017.6
수록면
253 - 264 (12page)
DOI
10.7232/iems.2017.16.2.253

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In recent decades, flexible manufacturing systems have emerged as a response to market demands of high product diversity. Scheduling is one important phase in production planning in all manufacturing systems. Although scheduling in classical manufacturing systems, such as flow and job shops, are well studied. Rarely, any paper studies scheduling of the more recent flexible manufacturing system. Since the problem class is NP-hard, different scheduling algorithms such as genetic algorithm (GA), simulated annealing (SA) algorithm, memetic algorithm (MA) and particle swarm algorithm (PSA) can be designed to solve this problem. This paper investigates a multi-objective evolutionary algorithm for scheduling flexible manufacturing systems to minimizing makespan, earliness and tardiness and startup costs. The distinctive feature of the proposed multi-objective evolutionary algorithm is its ability to search the solution space by an intelligent method, which is unlike other meta-heuristic algorithms avoid the coincidental method. Also, answer with the best quality and highest dispersion to obtain the dominant answer is used. Finally, we carry out computational experiments to demonstrate the effectiveness of our algorithm. The results show that the proposed algorithm has the ability to achieve the good solutions in reasonable computational time.

목차

ABSTRACT
1. INTRODUCTION AND LITERATURE REVIEW
2. PROBLEM FORMULATION
3. SCATTER SEARCH METHOD
4. THE GENERAL STRUCTURE OF SCATTER SEARCH METHOD
5. THE STRUCTURE OF PROPOSED SCATTER SEARCH METHOD
6. NSGA-II ALGORITHM
7. DETERMINING THE PARAMETERS OF ALGORITHM
8. CONCLUSION
REFERENCES

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-530-000982418