메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
PAN ZHAO (CHONNAM NATIONAL UNIVERSITY) BYEONG-CHUN SHIN (CHONNAM NATIONAL UNIVERSITY)
저널정보
한국산업응용수학회 JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS Journal of the Korean Society for Industrial and Applied Mathematics Vol.27 No.1
발행연도
2023.3
수록면
37 - 55 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper we propose a new algorithm for detecting and counting flowers in a complex background based on digital images. The algorithm mainly includes the following parts: edge contour extraction of flowers, edge contour determination of overlapped flowers and flower counting. We use a contour detection technique in Computer Vision (CV) to extract the edge contours of flowers and propose an improved algorithm with a concave point detection technique to find accurate segmentation for overlapped flowers. In this process, we first use the polygon approximation to smooth edge contours and then adopt the second-order central moments to fit ellipse contours to determine whether edge contours overlap. To obtain accurate segmentation points, we calculate the curvature of each pixel point on the edge contours with an improved Curvature Scale Space (CSS) corner detector. Finally, we successively give three adaptive judgment criteria to detect and count flowers accurately and automatically. Both experimental results and the proposed evaluation indicators reveal that the proposed algorithm is more efficient for flower counting.

목차

ABSTRACT
1. INTRODUCTION
2. RELATED WORK
3. METHODOLOGY
4. EXPERIMENTS AND RESULTS
5. CONCLUSIONS AND DISCUSSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-410-001333759