메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
허태성 (Inha Technical College) 방수영 (Inha Technical College)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제28권 제3호(통권 제228호)
발행연도
2023.3
수록면
17 - 24 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
데이터 과학과 관련한 과제를 제시하고 참가자가 이를 해결하는 캐글(Kaggle)의 대표적인 대회인 ‘Tatanic – Machine Learning from Disaster’ 문제를 기반으로 데이터 전처리 방식과 모델 구축이 예측 정확도와 점수에 어떤 영향을 미치는지 확인하고자 한다. 중복된 모델을 사용하였거나 앙상블 기법을 사용한 경우를 제외하고 높은 점수를 획득하여 상위 순위에 위치한 7건의 해결 방식을 선정하여 특징들을 비교 분석한다. 전처리를 진행하는 데 있어 대부분 고유하고 차별적인 특징을 가진 것을 확인하였으며, 거의 동일할 정도의 전처리 과정을 거쳤으나 모델의 종류에 따라 점수 차이가 존재하기도 하였다. 본 논문의 비교 분석 연구는 상위 점수 참가자의 전처리 방식의 특징과 분석 흐름을 이해함으로써 캐글 대회 참가자들과 데이터 과학 입문자들에게 많은 도움이 될 것으로 생각한다.

목차

Abstract
요약
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. The Proposed Scheme
Ⅳ. Applied algorithm
Ⅴ. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000417241