메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
한설빈 (계명대학교) 민지희 (국립암센터) 김대광 (계명대학교) 공인덕 (연세대학교) 김나현 (계명대학교)
저널정보
한국성인간호학회 성인간호학회지 성인간호학회지 제35권 제1호
발행연도
2023.2
수록면
1 - 12 (12page)

이용수

DBpia Top 0.5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: This study aimed to provide an overview of telomere length (TL) as an emerging biomarker in adult healthcare. Additionally, some measurement considerations and future directions for its application in adult nursing research were described. Methods: A comprehensive literature review was conducted. Results: TL is a widely known indicator of aging and aging-related diseases at the molecular level. Throughout the literature, TL has been established as a useful biomarker that is indicative of aging-related diseases such as cancer, metabolic diseases, and psychological distress and their resulting health conditions. The main pathway of TL shortening appears as an interaction between genetic and environmental factors through a mechanism commonly known as oxidative stress and inflammation. TL attrition may be slowed down, stopped, or even lengthened by interventions such as mindfulness, meditation, exercise, lifestyle modifications, and cognitive behavioral therapy, which have been demonstrated to have a positive effect on TL. As these interventions have been widely applied in adult nursing research, the value and scope of adult nursing science can be expanded by using TL in such research. Conclusion: TL has been shown to be associated with age-related diseases, which are mainly studied in adult nursing research. Therefore, it is necessary to explore various nursing phenomena using TL as a biomarker through adult nursing research and to develop nursing interventions that have a positive effect on TL.

목차

서론
본론
결론 및 제언
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-512-000437968