메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kiho Choi (Gacheon University)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제27권 제7호
발행연도
2022.12
수록면
1,021 - 1,033 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
After the Versatile Video Coding (VVC)/H.266 standard was completed, the Joint Video Exploration Team (JVET) began to investigate new technologies that could significantly increase coding gain for the next generation video coding standard. One direction is to investigate signal processing based tools, while the other is to investigate Neural Network based technology. Neural Network based Video Coding (NNVC) has not been studied previously, and this is the first trial of such an approach in the standard group. After two years of research, JVET produced the first common software called Neural Compression Software (NCS) with two NN-based in-loop filtering tools at the 27th meeting and began to maintain NN-based technologies for the common experiment. The coding performances of the two filters in NCS-1.0 are shown to be 8.71% and 9.44% on average in a random access scenario, respectively. All the material related to NCS can be found in the repository of the JVET. In this paper, we provide a brief overview and review of the NNVC activity studied in JVET in order to provide trend and insight for the new direction of video coding standard.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Neural Network Based Video Coding in JVET
Ⅲ. Review on NNVC contributions in JVET
Ⅳ. Experimental results
Ⅴ. NNVC common software
Ⅵ. Conclusion
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-567-000326121