메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안영필 (충북대) 박현준 (청주대)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제12호
발행연도
2022.12
수록면
1,769 - 1,776 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
긴 문장으로 이루어진 글을 자동으로 요약하는 것은 중요한 기술이다. BART 모델은 이러한 요약 문제에서 좋은 성능을 보여주고 널리 사용되고 있는 모델 중 하나이다. 일반적으로 특정 도메인의 요약 모델을 생성하기 위해서는 큰 데이터세트를 학습한 언어 모델을 그 도메인에 맞게 다시 학습하는 미세조정 작업을 수행한다. 이러한 미세조정은 일반적으로 마지막 전 연결 계층의 노드 수를 변경하는 방식으로 진행된다. 하지만 본 논문에서는 최근 다양한 모델에 적용되어 좋은 성능을 보여주고 있는 어텐션 계층을 추가하는 방법으로 미세조정하는 방법을 제안한다. 제안하는 방법의 성능을 평가하기 위해 미세조정 과정에서 층을 더 깊게 쌓기, 스킵 연결 없는 미세조정 등 다양한 실험을 진행하였다. BART 언어 모델에 스킵 연결을 가진 2개의 어텐션 계층을 추가하였을 때 가장 좋은 성능을 보였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 어텐션 기반 BART 모델 미세조정
Ⅳ. 실험 및 결과 분석
Ⅴ. 결론
REFERENCES

참고문헌 (42)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000295874