메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안정인 (Kangwon National University) 김윤 (Kangwon National University) 최현수 (Kangwon National University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제12호(통권 제225호)
발행연도
2022.12
수록면
77 - 84 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문은 객체 위치식별 알고리즘의 성능을 향상하기 위한 레이블 재할당 방법을 제안한다. 제안한 방법은 추론 단계와 재할당 단계로 구분한다. 추론 단계에서는 학습된 모델로부터 사전 지정된 크기에 따라 다중 스케일 추론을 수행한 뒤, 이를 마스킹한 영상을 다시 한번 추론하여 강인한 클래스 종류의 추론 결과를 얻는다. 재할당 단계에서는 박스간의 IoU를 계산하여 중복 박스를 제거하고, 박스와 클래스의 빈도를 계산하여 지배적 클래스를 다시 할당하였다. 제안한 방법을 검증하기 위하여 공사현장 안전장비 인식 영상 데이터 세트에 레이블 재할당 방법을 적용하고 이를 YOLOX-L 객체 탐지 모델에서 학습하였다. 실험 결과 적용 전 대비 mAP가 3.9% 향상하여 51.07%를 달성하였으며 AP_S를 3배 이상 향상하여 14.53%를 달성하였다. 실험 결과를 통해 레이블 재할당 알고리즘이 더 우수한 성능의 모델을 훈련해 냄을 확인하였다.

목차

Abstract
요약
I. Introduction
II. Related Works
III. The Proposed Method
IV. Experiments
V. Results
VI. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000290142