메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조희연 (Yonsei University) 이정우 (Yonsei University) 이홍래 (Yonsei University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제29권 제2호(통권 제239호)
발행연도
2024.2
수록면
101 - 108 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
AI-OCR은 광학 문자 인식(OCR) 기술과 Artificial intelligence(AI)의 결합으로 사람의 인식이 필요하던 OCR의 단점을 보완하는 기술 향상을 이뤄내고 있다. AI-OCR의 성능을 높이기 위해서는 다양한 학습데이터의 훈련이 필요하다. 하지만 이미지 색상이 비슷한 밝기를 가진 경우에는 인식률이 떨어지기 때문에, Homomorphic filtering(HF)을 이용한 전처리 과정으로 색상 차이를 분명하게 하여 텍스트 인식률을 높이게 된다. HF은 감마값을 이용해 이미지의 고주파와 저주파를 각각 조절한다는 점에서 텍스트 추출에 적합하지만 감마값의 조절이 수동적으로 이뤄지는 단점이 존재한다. 본 연구는 시험적 과정을 거쳐 이미지의 대비, 밝기 및 엔트로피를 근거하는 감마의 임계값 범위를 제안한다. 제안된 감마값 범위를 적용한 HF의 실험 결과는 효율적인 AI-OCR의 높은 등장 가능성을 시사한다.

목차

Abstract
요약
Ⅰ. Introduction
Ⅱ. Related works
Ⅲ. The Proposed Scheme
Ⅳ. Experiments
Ⅴ. Conclusion and Future Work
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089462639