메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Beomjun Kim (Kyungpook National University) Daerak Heo (Kyungpook National University) Woonchan Moon (Kyungpook National University) Joonku Hahn (Kyungpook National University)
저널정보
한국광학회 Current Optics and Photonics Current Optics and Photonics Vol.5 No.5
발행연도
2021.10
수록면
514 - 523 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Methods for absolute depth estimation have received lots of interest, and most algorithms are concerned about how to minimize the difference between an input defocused image and an estimated defocused image. These approaches may increase the complexity of the algorithms to calculate the defocused image from the estimation of the focused image. In this paper, we present a new method to recover depth of scene based on a sharpness-assessment algorithm. The proposed algorithm estimates the depth of scene by calculating the sharpness of deconvolved images with a specific point-spread function (PSF). While most depth estimation studies evaluate depth of the scene only behind a focal plane, the proposed method evaluates a broad depth range both nearer and farther than the focal plane. This is accomplished using an asymmetric aperture, so the PSF at a position nearer than the focal plane is different from that at a position farther than the focal plane. From the image taken with a focal plane of 160 cm, the depth of object over the broad range from 60 to 350 cm is estimated at 10 cm resolution. With an asymmetric aperture, we demonstrate the feasibility of the sharpness-assessment algorithm to recover absolute depth of scene from a single defocused image.

목차

Ⅰ. INTRODUCTION
Ⅱ. MODELING FOR A CAMERA WITH AN ASYMMETRIC APERTURE
Ⅲ. ABSOLUTE DEPTH ESTIMATION BASED ON THE SHARPNESS-ASSESSMENT ALGORITHM
Ⅳ. EXPERIMENTAL RESULTS
Ⅴ. CONCLUSION
REFERENCES

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0