메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정의정 (한국로봇융합연구원) 박성호 (한국로봇융합연구원) 강진규 (한국로봇융합연구원) 손소은 (한국로봇융합연구원) 조건래 (한국로봇융합연구원) 이영호 (현대무벡스)
저널정보
한국로봇학회(논문지) 로봇학회 논문지 로봇학회 논문지 제17권 제4호
발행연도
2022.12
수록면
417 - 424 (8page)
DOI
10.7746/jkros.2022.17.4.417

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, the developed trunk cargo unloading automation system is introduced, and the RGB-D sensor-based box loading situation recognition method and unloading plan applied to this system are suggested. First of all, it is necessary to recognize the position of the box in a truck. To do this, we first apply CNN-based YOLO, which can recognize objects in RGB images in real-time. Then, the normal vector of the center of the box is obtained using the depth image to reduce misrecognition in parts other than the box, and the inner wall of the truck in an image is removed. And a method of classifying the layers of the boxes according to the distance using the recognized depth information of the boxes is suggested. Given the coordinates of the boxes on the nearest layer, a method of generating the optimal path to take out the boxes the fastest using this information is introduced. In addition, kinematic analysis is performed to move the conveyor to the position of the box to be taken out of the truck, and kinematic analysis is also performed to control the robot arm that takes out the boxes. Finally, the effectiveness of the developed system and algorithm through a test bed is proved.

목차

Abstract
1. 서론
2. 상자 하차 로봇 시스템
3. 상자 적재 상황 인식 및 하차 계획
4. 실험
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-559-000132609