메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
SeungHyeon Jo (Chung-Ang University) Gyung-Tae Bae (Chung-Ang University) Haemin Song (Chung-Ang University) Seungjin Jung (Chung-Ang University) YoungWook Kang (Chung-Ang University) Jun Sup Shin (Chung-Ang University) Jongwon Choi (Chung-Ang University) Jin-wan Park (Chung-Ang University)
저널정보
중앙대학교 영상콘텐츠융합연구소 TECHART: Journal of Arts and Imaging Science TECHART: Journal of Arts and Imaging Science Vol.9 No.3
발행연도
2022.10
수록면
6 - 10 (5page)
DOI
10.15323/techart.2022.10.9.3.6

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As curation depends on the experience and preference of the curator, visitors’ movements and locations can vary according to the planning curator, which results in different reactions from visitors. Unfortunately, it is unfeasible for curators to assess their exhibitions before the opening of the exhibition to check visitors’ reactions. This study proposes an algorithm that automatically recommends the structure of the museum and the locations of the exhibitions to reflect visitors’ preferences and the curator’s intention on the uncontrollable architecture of the showing room and the fixed set of artworks. The proposed algorithm uses a reinforcement-learning-based scheme to solve complicated problems by determining the best sequence of simple actions, which are scored based on multiple rules. The exhibition curated using the proposed algorithm was demonstrated and published as a virtual museum using Unity and WebGL and showed good effectiveness.

목차

Abstract
1. Introduction
2. Related work
3. Methodology
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0