메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Iskandar Muda (Universitas Sumatera Utara) R. Sivaraman (Arumbakkam University of Madras) Sulieman Ibraheem Shelash Al-Hawary (Al al-Bayt University) Untung Rahardja (University of Raharja) Rusul S. Bader (Al- Mustaqbal University College) Deni Kadarsyah (Universitas Pendidikan Indonesia) Karrar Shareef Mohsen (Al-Ayen University) Abdullah Hasan Jabbar (Sawa University) Dr Purnima Chaudhary (GLA University Mathura-India)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.21 No.3
발행연도
2022.9
수록면
503 - 515 (13page)
DOI
10.7232/iems.2022.21.3.503

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this research, the location of hubs in computer networks is investigated using the whale optimization algorithm. The problem of locating hubs in computer networks is an optimization problem and requires the definition of a suitable fit function. Therefore, the total data transfer time and the cost of creating hubs is used as a fit function. Capacitive hubs increase network availability because hubs have more response capacity than the number of node requests connected to the hubs. In hub location issues, the study seeks to connect the nodes to the nearest hub and create a computer network with the least cost of connecting the nodes to the hubs. The present study attempts to reduce disruptions in computer networks as a research innovation. Therefore, by using the whale optimization algorithm and solving the model with its help, the effective factors that affect computer network disruptions and examining the effect of each are identified. Given the results, the model’s reaction in terms of time and cost led to an increase in temporal and cost parameters.

목차

ABSTRACT
1. INTRODUCTION
2. LITERATURE REVIEW
3. STATEMENT OF THE PROBLEM
4. METHODS
5. RESULTS AND DISCUSSION
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-530-000104595