메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Dadang Mohamad (Indonesian University of Education) Alim Al Ayub Ahmed (Jiujiang University) Gunawan Widjaja (Universitas Krisnadwipayana) Tawfeeq Alghazali (Islamic University) John William Grimaldo Guerrero (Universidad de la Costa) Irina Fardeeva (Kazan Federal University) Alireza Hasanzadeh Kalajahi (Islamic Azad University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.20 No.4
발행연도
2021.12
수록면
613 - 620 (8page)
DOI
10.7232/iems.2021.20.4.613

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The problem studied in this paper is the p hub center and the network structure is hierarchical and in three levels; where level one is for demand nodes, level two is for hub nodes, and level three is for central hubs. Central hubs have a complete network and hubs in the network have the capacity constraint. Given that the issue under consideration is for the purpose of transporting perishable goods, Such problems are often used in transportation systems in which customer response time is of great importance and sensitivity; Therefore, the objectives of the proposed model are to find the best location for hubs in the network as well as the best allocation of nodes to hubs so that network transportation costs are reduced and the maximum travel time between each pair of origin destination nodes is minimized. To evaluate the model, a numerical example with CAB dataset is introduced and to review and analyze the results, GAMS software with CPLEX solver is used. The results show that the discount coefficient of central hubs compared to the discount coefficient of second level hubs has the greatest impact on the cost of transportation and travel time.

목차

ABSTRACT
1. INTRODUCTION
2. PROBLEM MODELING
3. NUMERICAL RESULTS
4. CONCLUSION
REFERENCES

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-530-000124195