메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤지애 (숙명여자대학교) 송유정 (세명대학교) 전자연 (숙명여자대학교) 안병학 (홍익대학교) 임순범 (숙명여자대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제25권 제8호
발행연도
2022.8
수록면
1,059 - 1,068 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, research using image-based deep learning is being conducted to determine similar fonts or recommend fonts. In order to increase the accuracy in judging the similarity of Hangul fonts, a previous study was conducted to calculate the similarity according to the combination of stroke elements. In this study, we tried to solve this problem by designing an integrated model that reflects the weights for each stroke element. By comparing the results of the user"s font similarity calculation conducted in the previous study and the weighted model, it was confirmed that there was no difference in the ranking of the influence of the stroke elements. However, as a result of comparison by letter sizes, it was confirmed that there was a difference in the ranking of the influence of stroke elements. Accordingly, we proposed a weighted model set separately for each font size.

목차

ABSTRACT
1. 서론
2. 관련 연구
3. 개별 형태소별 영향력 순위 계산
4. 가중치 계산 모델의 실험 분석 및 검증
5. 결론
REFERENCE

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001691292