메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
한언용 (경북대학교) 정인욱 (경북대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.49 No.8
발행연도
2022.8
수록면
646 - 654 (9page)
DOI
10.5626/JOK.2022.49.8.646

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
질병 분석 모델에서 유전자 발현정보를 바탕으로 다양한 연구방법들이 제시되고 있다. 암 유전체 데이터 분석에 있어 패스웨이를 바탕으로 숨겨진 특성을 발굴하는 방법들은 결과 해석에 유용하다. 본 연구에서는 유전자들의 발현조절 정보를 토대로 한 패스웨이 단위의 유전자 상관관계 네트워크를 비교분석 하였다. 비교하고자 하는 두 네트워크의 규모의 차이가 생기게 되면 정보량의 편향성으로 인해 보다 큰 규모의 네트워크 정보에 치우쳐진 결과를 나타내게 된다. 이러한 편향성을 해소하기 위해 네트워크 망 구성에 대한 정보량을 이용하여 서로 다른 배경을 가진 환자군의 네트워크를 조정하는 방법을 제안한다. 정규화된 네트워크들은 주요 유전자군들의 비교분석법을 적용했으며, 총 4종류의 대장암의 아형 데이터를 활용하여 202개의 패스웨이 네트워크를 분석한 후 아형 특이적인 5개 패스웨이를 발굴했다. 이들은 모두 대장암과 연관된 주요 패스웨이로 선행연구에서 보고된 바가 있어 제안하는 방법의 유효성을 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 연구 방법
4. 결과
5. 결론
Reference

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0