메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Changwoo Lee (The Catholic University of Korea) Jinwon Choi (The Catholic University of Korea)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.11 No.2
발행연도
2022.4
수록면
126 - 132 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Many studies on image deblurring have been conducted, and deep learning methods for blind image deblurring have received considerable attention due to their good performance. Recently, the SelfDeblur method was proposed for blind image deblurring based on deep image prior (DIP). In the SelfDeblur method, two neural networks for an image generator and a blur kernel generator are learned simultaneously with only one blurry image. This shows the feasibility of blind image deblurring using unsupervised learning, since it requires no training process. In this paper, we propose a method to maximize the performance of blind image deblurring based on DIP. The optimal loss function for deep learning is studied for the SelfDeblur method, and the deblurring performance of the proposed method is stabilized and maximized using the image prior and the kernel prior for the total loss function. Extensive computer simulations show that the proposed method yields superior performance compared to conventional methods.

목차

Abstract
1. Introduction
2. Blind Image Deblurring Methods
3. Blind Image Deblurring Method based on Deep Image Prior
4. Proposed Blind Image DeblurringMethod Based on Deep Image Prior
5. Performance Analysis
6. Conclusion
References

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0