메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정호진 (고려대학교) 유효곤 (고려대학교) 조규환 (고려대학교) 이상근 (고려대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제32권 제3호
발행연도
2022.6
수록면
501 - 511 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
2021년에는 코로나의 여파로 랜섬웨어를 활용한 공격이 유행했으며 그 수는 매년 급증하고 있다. 그 중 파워쉘은 랜섬웨어에 주요 기술로 사용되고 있어 파워쉘 기반 악성코드 탐지 기법의 필요성은 증가하고 있으나 기존의 탐지기법은 난독화가 적용된 스크립트를 탐지하지 못하거나 역난독화에 시간이 오래 소요되는 한계가 존재한다. 이에 본 논문에서는 간단하고 빠른 역난독화 처리과정, Word2Vec과 CNN(Convolutional Neural Network)으로 구성되어 스크립트의 의미를 학습하고 특징을 추출해 악성 여부를 판단할 수 있는 딥러닝 기반의 분류 모델을 제안한다. 2021 사이버보안 AI/빅데이터 활용 경진대회의 AI 기반 파워쉘 악성 스크립트 탐지 트랙에서 제공된 1400개의 악성코드와 8600개의 정상 스크립트를 이용하여 제안한 모델을 테스트한 결과 기존보다 5.04배 빠른 역난독화 실행시간, 100%의 역난독화 성공률, 0.01의 FPR(False Positve Rate), 0.965의 TPR(True Positive Rate)로 악성코드를 빠르고 효과적으로 탐지함을 보인다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 제안 방법
IV. 실험 및 평가
V. 결론
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0