메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이재준 (금오공과대학교) 한현택 (금오공과대학교) 최연웅 (금오공과대학교) 이해연 (금오공과대학교)
저널정보
한국정보기술학회 한국정보기술학회논문지 한국정보기술학회논문지 제20권 제3호(JKIIT, Vol.20, No.3)
발행연도
2022.3
수록면
1 - 8 (8page)
DOI
10.14801/jkiit.2022.20.3.1

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
다양한 스마트 기기에서 오디오 정보들을 수집하고 활용하는 응용들이 개발되고 있다. 방대한 오디오 중에서 사람 음성은 중요한 정보로 오디오에서 음성 구간만 축약하는 것은 유용하다. 본 논문에서는 MobileNet을 사용하여 오디오에서 비음성 구간들을 제외한 음성 구간만을 축약시키는 방법을 제안한다. 입력 오디오를 3초 단위 세그먼트로 구분하고, MFCC 특징을 추출하여 사람 음성 판별에 활용하였다. 특히, 기존에 많이 사용되는 CNN 모델은 구조가 깊어져서 연산량이 증가하는 문제가 있어서, 연산량 최적화에 중점을 둔 MobileNet을 활용하였다. 국내외 여러 데이터셋과 자체적으로 수집한 오디오를 사용하여 실험을 수행하였고, 그 결과 세그먼트 단위로 93.92% 음성 검출 정확도와 전체 오디오에 대해 88.05%의 축약 정확도를 달성하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. MobileNet을 이용한 사람 음성 구간의 오디오 축약 방법
Ⅳ. 실험 결과 및 분석
Ⅴ. 결론 및 향후 과제
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001069265