메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임희성 (Ajou University) 윤진식 (CM PARTNER) 이교범 (Ajou University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제71권 제2호
발행연도
2022.2
수록면
366 - 372 (7page)
DOI
10.5370/KIEE.2022.71.2.366

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
This paper proposes a SOH Estimation of LiFePO4 battery management systems using a Linear Regression Analysis. Among the methods of machine learning, supervised learning learns the relationship between the input data(battery characteristic) and the output data(failure data) to find a model that is expressed as a rule or function. Unsupervised learning performs failure diagnosis and prediction by discovering patterns inherent in changing battery characteristics data during use. The algorithm estimates DCIR according to the input parameters using linear regression analysis of supervised learning, and clustering of data to confirm association with failure causes. The validity of the proposed machine learning algorithm is verified by experiment.

목차

Abstract
1. 서론
2. 리튬인산철 배터리의 특징 및 상태분석
3. 회귀분석을 이용한 배터리 상태추정
4. 실험을 통한 고장진단 검증
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0