메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이좌형 (한국전자통신연구원) 도윤미 (한국전자통신연구원) 허태욱 (한국전자통신연구원)
저널정보
대한전자공학회 대한전자공학회 학술대회 2021년도 대한전자공학회 추계학술대회 논문집
발행연도
2021.11
수록면
744 - 747 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Because of COVID 19, nowadays many people stay in the home and consume more energy than past. Moreover, many home are using new electric home appliance such as dishwasher or washer dryer which consumes energy for long time. To reduce energy consumption and use energy more efficiently energy usage pattern should be analyzed. In the paper, we use Boosting algorithm as analysis method. Boosting algorithm is a kind of ensemble machine learning and based on decision tree. We use the feature importance result of Boosting algorithm as correlation between appliances.

목차

Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 분석 결과
Ⅳ. 결론 및 향후 연구 방향
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0