메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ki-Hwan Kim (Dongseo University) HyunHo Kim (Dongseo University) Hoon Jae Lee (Dongseo University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제1호(통권 제214호)
발행연도
2022.1
수록면
43 - 50 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
CPA(Correlation Power Analysis)는 암호 알고리즘이 탑재된 공격 대상 장비의 미세한 소비전력을 측정하여 90% 이상의 확률로 암호 알고리즘에 사용된 비밀키를 추측하는 부채널 공격 방법이다. CPA는 통계를 기반으로 분석을 수행하기 때문에 반드시 많은 양의 데이터가 요구된다. 따라서 CPA는 매회 공격을 위해 약 15분 이상 소비전력을 측정해야만 한다. 본 논문에서는 CPA의 데이터 수집 문제를 해결하기 위해 입력데이터를 축적하고 결과를 예측할 수 있는 CNN(Convolutional Neural Network)을 사용하는 방법을 제안한다. 사전에 공격 대상 장비의 소비전력을 수집 및 학습을 통해 임의의 소비전력을 입력시키면 즉각적으로 비밀키를 추정할 수 있어 연산속도를 향상하고 96.7%의 비밀키 추측 정확도를 나타냈다.

목차

Abstract
요약
I. Introduction
II. Related Work
III. Proposal new CPA method
IV. Compared Traditional CPA and new CPA method
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0