메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황치곤 (광운대학교) 윤창표 (경기과학기술대학교) 김대진 (동국대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제1호
발행연도
2022.1
수록면
70 - 75 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
위치를 정확하게 측정하는 것은 다양한 서비스를 제공하는 데 필요하다. 실내 측위를 위한 데이터는 스마트 폰의 앱을 통해 WiFi 장치로부터 RSSI 값을 측정한다. 이렇게 측정된 데이터는 기계학습의 원시 데이터가 된다. 특징 데이터는 측정된 RSSI 값이고, 레이블은 측정한 위치에 대한 공간의 이름으로 한다. 이를 위한 기계학습 기법은 분류에 효율적인 기법을 적용하여 WiFi 신호만으로 정확한 위치를 예측하는 기법을 연구하고자 한다. 앙상블은 하나의 모델보다 다양한 모델을 통하여 더 정확한 예측값을 구하는 기법으로, bagging과 boosting이 있다. 이 중 Boosting은 샘플링한 데이터를 바탕으로 모델링한 결과를 통해 모델의 가중치를 조정하는 기법으로, 다양한 알고리즘이 있다. 본 연구는 위 기법 중 XGboost를 이용하고, 다른 앙상블 기법과 이용한 수행결과를 바탕으로 성능을 평가한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안된 기법 구현 및 평가
Ⅳ. 비교 평가
Ⅴ. 결론
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0