메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신광성 (원광대학교) 이희권 (원광대학교) 염성관 (원광대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제25권 제1호
발행연도
2021.1
수록면
75 - 80 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
측위 기술은 증강현실, 스마트 팩토리, 자율주행 등에서 중요한 기능을 수행하고 있다. 측위 기술 중에서 비콘을 이용한 측위 방법은 RSSI(Receiver Signal Strength Indicator) 값의 편차로 인하여 도전적인 과제로 여겨져 왔다. 본 논문에서는 수신기의 RSSI 값을 입력으로 하고 거리를 목표 값으로 하는 신경망을 학습시켜서 이동하는 객체에 대한 위치를 예측하였다. 이를 수행하기 위해 RSSI 대비 거리 실측값을 수집하였다. 수집한 데이터로 합성 데이터를 만들기 위한 신경망을 도입하였다. 이 신경망을 바탕으로 거리 대비 RSSI 값을 예측하였다. 합성 데이터를 바탕으로 가상으로 좌표계를 구성하여 객체의 위치를 예측하였다. 합성 데이터를 생성하기 위한 신경망으로 RSSI의 표준편차는 구하였고 이 값을 기반으로 가상환경에서 단말의 위치를 추적하는 신경망을 학습시켜 객체의 좌표를 추정하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 제안하는 신경망 기반 실내 측위 방법
Ⅲ. RSSI 합성데이터 신경망
Ⅳ. 실내 측위 신경망 모델
Ⅴ. 실내 측위 신경망 모델 모의 실험 결과
Ⅵ. 결론
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001462533