메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
YAO WANG (Seoul National University of Science and Technology) Jong-Eun Ha (Seoul Nation University of Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
1,523 - 1,528 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this article, we focus on the scene text recognition problem, which is one of the challenging sub-files of computer vision because of the random existence of scene text. Recently, scene text recognition has achieved state-of-art performance because of the improvement of deep learning. At present, encoder-decoder architecture was widely used for scene recognition tasks, which consist of feature extractor, sequence module. Specifically, at the decoder part, connectionist temporal classification(CTC), attention mechanism, and transformer(self-attention) are three main approaches used in recent research. CTC decoder is flexible and can handle sequences with large changes in length for its align sequences features with labels in a frame-wise manner. Attention decoder can learn better and deeper feature expression and get the better position information of each character. Attention decoder can get more robust and accurate performance for both regular and irregular scene text. Moreover, a novel decoder mechanism is introduced in our study. The proposed architecture has several advantages: the model can be trained using the end-to-end manner under the condition of multi decoders, and can deal with the sequences of arbitrary length and the images of arbitrary shape. Extensive experiments on standard benchmarks demonstrate that our model’s performance is improved for regular and irregular text recognition.

목차

Abstract
1. INTRODUCTION
2. RELATED WORKS
3. METHODOLOGY
4. EXPERIMENTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0