메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Mengxue. Mu (Beihang University) Long. Zhao (Beihang University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
1,093 - 1,098 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The low cost GNSS/INS integrated system applied in the land vehicle can benefit from the information fusion of odometer and motion aided constraints. However, the performance of the fusion system is affected by four key issues. Firstly, odometer scale factor is not a constant value and differs with the change of temperature, tire pressure and vehicle load. Secondly, the odometer measures velocity in the vehicle body frame (VBF) rather than the inertial sensor frame, whereas misalignment between the inertial measurement unit (IMU) and the VBF generally exists. Thirdly, the IMU origin doesn’t coincide with the odometer origin, lever arm influences the position accuracy. Fourthly, poor road condition may make the wheel spin or slide, and eventually leads to odometer failure. To solve aforementioned problems, this paper attempts to provide a scale factor and misalignment estimation method, a lever arm compensation (LAC) approach, and an odometer fault detection and isolation (FDI) indicator according to the odometer position error propagation equation. In addition, a two-cascaded Kalman filter is designed based on the context awareness to fuse all data information. Simulation experiment demonstrates the effectiveness of the scale factor and misalignment calibration algorithm, lever arm compensation approach and fault detection indicator. Moreover, the processed fusion system can significantly improve the positioning accuracy in GNSS-hostile environment.

목차

Abstract
1. INTRODUCTION
2. COORDINATE FRAMES AND NOTATIONS
3. GNSS/INS/ODOMETER DATA FUSION
4. SIMULATION AND EXPERIMENTS
5. CONCLUTIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0