메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
108 - 112 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
With the advancement of neural network technology, many researchers are trying to find a clever way to apply neural network to a fault detection and isolation area for satisfactory and safer operations of the system. Some researchers detect system faults by combining a concrete model of the system with neural network, generating residuals by neural network, or training neural network with specific sensor signals of the system. In this article, we make a fault detection and isolation neural network algorithm that uses only inherent sensor measurements and control inputs of the system. This algorithm does not need a model of the system, residual generations, or additional sensors. We obtain sensor measurements and control inputs in a discrete-time manner, cut signals with a sliding window approach, and label data with one-hot vectors representing a normal or fault classes. We train our neural network model with the labeled training data. We give 2 neural network models: a stacked long short-term memory neural network and a multilayer perceptron. We test our algorithm with the quadrotor fault simulation and the real experiment. Our algorithm gives nice performance on a fault detection and isolation of the quadrotor.

목차

Abstract
1 INTRODUCTION
2 METHODOLOGY
3 SIMULATION
4 EXPERIMENT
5 CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0