메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김진강 (호서대학교) 황찬웅 (호서대학교) 이태진 (호서대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제31권 제6호
발행연도
2021.12
수록면
1,193 - 1,204 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
정보보안에서 AI 기술은 알려지지 않은 악성코드를 탐지하기 위해 사용한다. AI 기술은 높은 정확도를 보장하지만, 오탐을 필연적으로 수반하므로 AI가 예측한 결과를 해석하기 위해 XAI 도입을 고려하고 있다. 그러나, XAI는 단순한 해석결과만 제공할 뿐 그 해석을 평가하거나 검증하는 XAI 평가 연구는 부족하다. XAI 평가는 어떤 기술이 더 정확한지 안전성 확보를 위해 필수적이다. 본 논문에서는 악성코드 분야에서 AI 예측에 크게 기여한 feature로 AI 결과를 해석하고, 이러한 AI 결과해석에 대한 평가방안을 제시한다. 약 94%의 정확도를 보이는 tree 기반의 AI 모델에 두 가지 XAI 기술을 사용하여 결과해석을 진행하고, 기술 정확도 및 희소성을 분석하여 AI 결과해석을 평가한다. 실험 결과 AI 결과해석이 적절하게 산출되었음을 확인하였다. 향후, XAI 평가로 인해 XAI 도입 및 활용은 점차 증가하고, AI 신뢰성 및 투명성이 크게 향상될 것으로 예상한다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 악성코드 분류 해석 평가 방법론
IV. 실험 결과
V. 결론
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-000066953