메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최봉준 (연세대학교 컴퓨터과학과) 이한주 (연세대학교) 용우석 (연세대학교) 이원석 (연세대학교)
저널정보
한국차세대컴퓨팅학회 한국차세대컴퓨팅학회 논문지 한국차세대컴퓨팅학회 논문지 제13권 제5호
발행연도
2017.1
수록면
7 - 18 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
트위터는 사용자들에게 정보를 받거나 교환하는 채널로써의 역할이 활발히 이루어지고 있고 새로운 사건이 발생했을 때 빠르게 반응하기 때문에 지진이나 홍수, 자살 등의 새로운 사건을 탐지하는 센서역할로 활용할 수 있다. 그리고 사건을 탐지하기 위해서 우선적으로 관련된 트윗 추출이 필수적이다. 하지만 관련된 트윗을 찾기 위해 관련 키워드를 포함한 트윗을 추출하기 때문에 해당 키워드가 없지만 의미적으로 사건과 관련이 있는 트윗은 찾지 못하는 문제점이 있다. 또한 기존의 연구들은 디스크에 저장된 데이터에 대한 분석이 주를 이루고 있어 원하는 결과를 얻기위해서는 데이터를 수집하여 저장하고 분석에 이르기까지 오랜 시간이 소모된다. 이러한 문제점을 해결하기 위해 본연구에서는 실시간 이슈 탐지를 위한 일반-급상승 단어 사전 생성 및 매칭 기법을 제안한다. 데이터 스트림 인메모리 기반으로 일반-급상승 단어 사전을 생성 및 관리하기 때문에 새로운 사건을 빠르게 학습하고 대응할 수 있다. 또한 분석을 원하는 주제의 일반 사전과 급상승 사전을 동시에 관리하기 때문에 기존의 방법으로 찾지 못하는 트윗을검출해 낼 수 있다. 본 연구를 통해 빠른 정보와 대응이 필요한 분야에 즉시적으로 활용할 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0