메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한공간정보학회 한국공간정보학회지 한국공간정보학회지 제23권 제2호
발행연도
2015.4
수록면
69 - 81 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
SNS사용자의 거주 지역을 유추하여 그들이 생성한 데이터에 거주위치를 부여하는 것은 위치희박(location sparsity)과 생태학적 오류문제로 인해 연구결과의 신뢰성이 떨어진다는 평가를 받아온 공간빅데이터 연구에 대안이 될 수 있다. 본 연구에서는 Tweet 사용자의 거주 지역을 유추하는 방법으로 사용자 타임라인데이터 속에서 찾아낸 일상생활활동패턴을 이용하는 방법을 고안하였다. 트윗 사용자의 일상생활활동패턴은 이동궤적과 사용자의 언어(text)에서 확인할 수 있었으며 전자를 활용한 모델을 일상이동패턴모델, 후자를 활용한 모델을 일상 활동장 모델이라 명명하고 각각 모델에 입력될 변수를 선정하였다. 자신의 거주 지역에서 가장 높은 빈도의 트윗 발생 여부와 가장 높은 빈도의 거주 행정구역 표현 단어를 사용하는지 아닌지를 종속변수로 한 판별분석을 실시하여 모델을 작성하였으며 설명력은 일상 이동패턴모델, 일상 활동장 모델 각각 67.5%, 57.5%였다. 이 모델을 스트레스 관련 트윗을 작성한 사용자의 타임라인데이터로 구성된 테스트데이터에 입력해본 결과 전체 사용자 48,235명 중 5,301명의 거주 지역을 유추하였고 이를 활용하여 위치 부여된 스트레스 관련 트윗 9,606개를 확보하였다. 본 연구의 유추기법을 통해 기존 SNS데이터 분석연구에서 사용하는 데이터 수집 방법보다 44배 많은 위치 부여 트윗을 확보할 수 있었다. 본 연구방법론은 SNS데이터를 이용한 연구에서 위치 부여된 데이터를 확보하는데 활용 가능할 것으로 판단되며, 각종 지역통계와 상관관계파악을 통해 지역적 현상 분석에도 SNS데이터를 이용할 수 있는 가능성을 높일 것으로 판단된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-452-001275221