메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Deuk-Kyu Kum (Yuhan University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제22권 제10호(통권 제163호)
발행연도
2017.10
수록면
109 - 119 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In recent through development of IOT owing to that mass stream data is being generated in variety of application complex event processing technology is being watched with keen interest as a technology to analyze this kind of real-time continuous data. However, the existing study related with complex event processing only comes to an end at simple event processing based on low-level event or comes to an end at service defect discovery with providing limited operator and so on. Accordingly, there would be limitation to provide useful analysis information. In this paper in consideration of complex event along with aspect-oriented programming an extended complex event model is provided, which is possible to provide more valuable and useful information. Specifically, we extend the model to support hierarchical event structures and let the model recognize point-cuts of aspect-oriented programming as events. We provide the event operators designed to specify the events on instances and handle temporal relations of the instances. It is presented that syntax and semantics of constructs in our event processing language including various and progressive event operators, complex event pattern, etc. In addition, an event context mechanism is proposed to analyze more delicate events. Finally, through application studies application possibility of this study would be shown and merits of this event model would be present through comparison with other event model.

목차

Abstract
I. Introduction
II. Preliminaries
III. The Design of an Extended Complex Event Model
V. Case Study
VI. Assessment
VII. Conclusions
REFERENCES

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0