메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
손향숙 (한국방송통신대학교)
저널정보
한국영미문학교육학회 영미문학교육 영미문학교육 제22권 제1호
발행연도
2018.1
수록면
49 - 71 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The concept of mental lexicon lays a foundation for planning a vocabulary lesson in English literature class. Words do not exist separately in the mental lexicon. When a new word is recognized, it is categorized and organized in semantic fields. Mackey defines the semantic field as a network of associations, in which each word can be a centre of web of associations radiating in all directions. Categorization and organization in semantic fields facilitate storage and retrieval of words. The concepts of mental lexicon and semantic fields emphasize the importance of meaning in vocabulary lesson. Craik and Lockhart’s ‘depth of processing’ argues that retention and retrieval of words depend on the depth to which a new word is processed, and that only deeper processing leads to an improvement in memory. Depth of processing is interpreted as semantic processing, which emphasizes pre-existing knowledge and relationship of words. The depth of processing can be applied to a vocabulary lesson of an English literature class which reads Holes by Louis Sachar. This paper suggests selecting key words that can be centers of related themes through brainstorming, and building networks of words and developing those networks into semantic fields. Words like hole, gap, water, femininity, zero are presented as key words. Students are asked to suggest words associated with the key words, and to provide text details that explain their association logically. Sessions following the vocabulary lesson should be organized to ensure cumulative repetition of words tackled in the vocabulary lesson and to strengthen students’ knowledge and analysis of Holes.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0