메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Liang-Yu Lin (London School of Hygiene and Tropical Medicine) Charlotte Warren-Gash (London School of Hygiene and Tropical Medicine) Liam Smeeth (London School of Hygiene and Tropical Medicine) Pau-Chung Chen (National Taiwan University College of Public Health)
저널정보
한국역학회 Epidemiology and Health Epidemiology and Health Vol.40
발행연도
2018.1
수록면
1 - 6 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Electronic health records (EHRs) can provide researchers with extraordinary opportunities for population based research. The National Health Insurance system of Taiwan was established in 1995 and covers more than 99.6% of the Taiwanese population; this system’s claims data are released as the National Health Insurance Research Database (NHIRD). All data from primary outpatient departments and inpatient hospital care settings are included in this database. After a change and update in 2016, the NHIRD is maintained and regulated by the Data Science Centre of the Ministry of Health and Welfare of Taiwan. Datasets for approved research are released in three forms: sampling datasets comprising two million subjects, disease-specific datasets, and full population datasets. These datasets are de-identified and contain basic demographic information, disease diagnoses, prescriptions, operations, and investigations. Data can be linked to governmental surveys or other research datasets. While only a small number of validation studies with small sample sizes have been undertaken, they generally report positive predictive values of over 70% across different diagnoses. Currently, patients cannot opt out of inclusion in the database, though this requirement is under review. In conclusion, the NHIRD is a large, powerful data source for biomedical research.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0